Triangle Lengths
Source: 1974 USAMO Problem 5
March 13, 2010
rotationgeometrygeometric transformation
Problem Statement
Consider the two triangles and shown below. In triangle ABC, \angle ADB \equal{} \angle BDC \equal{} \angle CDA \equal{} 120^\circ. Prove that x\equal{}u\plus{}v\plus{}w.
[asy]unitsize(7mm);
defaultpen(linewidth(.7pt)+fontsize(10pt));pair C=(0,0), B=4*dir(5);
pair A=intersectionpoints(Circle(C,5), Circle(B,6))[0];pair Oc=scale(sqrt(3)/3)*rotate(30)*(B-A)+A;
pair Ob=scale(sqrt(3)/3)*rotate(30)*(A-C)+C;pair D=intersectionpoints(Circle(Ob,length(Ob-C)), Circle(Oc,length(Oc-B)))[1];real s=length(A-D)+length(B-D)+length(C-D);
pair P=(6,0), Q=P+(s,0), R=rotate(60)*(s,0)+P;
pair M=intersectionpoints(Circle(P,length(B-C)), Circle(Q,length(A-C)))[0];draw(A--B--C--A--D--B);
draw(D--C);label("",B,SE);
label("",C,SW);
label("",A,N);
label("",D,NE);
label("",midpoint(B--C),S);
label("",midpoint(A--C),WNW);
label("",midpoint(A--B),NE);
label("",midpoint(A--D),E);
label("",midpoint(B--D),N);
label("",midpoint(C--D),NNW);draw(P--Q--R--P--M--Q);
draw(M--R);label("",P,SW);
label("",Q,SE);
label("",R,N);
label("",M,NW);
label("",midpoint(P--R),NW);
label("",midpoint(P--Q),S);
label("",midpoint(Q--R),NE);
label("",midpoint(R--M),ESE);
label("",midpoint(P--M),NW);
label("",midpoint(Q--M),NE);[/asy]