MathDB
Problems
Contests
National and Regional Contests
Israel Contests
Israel Olympic Revenge
2018 Israel Olympic Revenge
4
A function from R^R to R^R
A function from R^R to R^R
Source: Israeli Olympic Revenge 2018, Problem 4
June 15, 2018
function
functional equation
algebra
Problem Statement
Let
F
:
R
R
→
R
R
F:\mathbb R^{\mathbb R}\to\mathbb R^{\mathbb R}
F
:
R
R
→
R
R
be a function (from the set of real-valued functions to itself) such that
F
(
F
(
f
)
∘
g
+
g
)
=
f
∘
F
(
g
)
+
F
(
F
(
F
(
g
)
)
)
F(F(f)\circ g+g)=f\circ F(g)+F(F(F(g)))
F
(
F
(
f
)
∘
g
+
g
)
=
f
∘
F
(
g
)
+
F
(
F
(
F
(
g
)))
for all
f
,
g
:
R
→
R
f,g:\mathbb R\to\mathbb R
f
,
g
:
R
→
R
. Prove that there exists a function
σ
:
R
→
R
\sigma:\mathbb R\to\mathbb R
σ
:
R
→
R
such that
F
(
f
)
=
σ
∘
f
∘
σ
F(f)=\sigma\circ f\circ\sigma
F
(
f
)
=
σ
∘
f
∘
σ
for all
f
:
R
→
R
f:\mathbb R\to\mathbb R
f
:
R
→
R
.
Back to Problems
View on AoPS