MathDB
A function from R^R to R^R

Source: Israeli Olympic Revenge 2018, Problem 4

June 15, 2018
functionfunctional equationalgebra

Problem Statement

Let F:RRRRF:\mathbb R^{\mathbb R}\to\mathbb R^{\mathbb R} be a function (from the set of real-valued functions to itself) such that F(F(f)g+g)=fF(g)+F(F(F(g)))F(F(f)\circ g+g)=f\circ F(g)+F(F(F(g))) for all f,g:RRf,g:\mathbb R\to\mathbb R. Prove that there exists a function σ:RR\sigma:\mathbb R\to\mathbb R such that F(f)=σfσF(f)=\sigma\circ f\circ\sigma for all f:RRf:\mathbb R\to\mathbb R.