MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2011 Today's Calculation Of Integral
760
Today's calculation of Integral 760
Today's calculation of Integral 760
Source: created by kunny
October 7, 2011
calculus
integration
trigonometry
calculus computations
Problem Statement
Prove that there exists a positive integer
n
n
n
such that
∫
0
1
x
sin
(
x
2
−
x
+
1
)
d
x
≥
n
n
+
1
sin
n
+
2
n
+
3
.
\int_0^1 x\sin\ (x^2-x+1)dx\geq \frac {n}{n+1}\sin \frac{n+2}{n+3}.
∫
0
1
x
sin
(
x
2
−
x
+
1
)
d
x
≥
n
+
1
n
sin
n
+
3
n
+
2
.
Back to Problems
View on AoPS