MathDB
Function with f(mn) = f(m)f(n)

Source: Dutch NMO 1999

October 22, 2005
function

Problem Statement

Let f:Z{1,1}f: \mathbb{Z} \rightarrow \{-1,1\} be a function such that f(mn)=f(m)f(n), m,nZ. f(mn) =f(m)f(n),\ \forall m,n \in \mathbb{Z}. Show that there exists a positive integer aa such that 1a121 \leq a \leq 12 and f(a)=f(a+1)=1f(a) = f(a + 1) = 1.