MathDB
interesting one

Source: RS2004

March 20, 2005
inequalities proposedinequalities

Problem Statement

The positive real numbers x,y,zx,y,z satisfy x+y+z=1x+y+z=1. Show that 3xyz(1x+1y+1z+11x+11y+11z)4+4xyz(1x)(1y)(1z).\sqrt{3xyz}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}\right)\geq4+ \frac{4xyz}{(1-x)(1-y)(1-z)}.