MathDB
1988 AJHSME #4

Source:

June 21, 2011

Problem Statement

The figure consists of alternating light and dark squares. The number of dark squares exceeds the number of light squares by (A) 7(B) 8(C) 9(D) 10(E) 11 \text{(A)}\ 7\qquad\text{(B)}\ 8\qquad\text{(C)}\ 9\qquad\text{(D)}\ 10\qquad\text{(E)}\ 11
[asy] unitsize(12); for(int a=0; a<7; ++a) { fill((2a,0)--(2a+1,0)--(2a+1,1)--(2a,1)--cycle,black); draw((2a+1,0)--(2a+2,0)); } for(int b=7; b<15; ++b) { fill((b,14-b)--(b+1,14-b)--(b+1,15-b)--(b,15-b)--cycle,black); } for(int c=1; c<7; ++c) { fill((c,c)--(c+1,c)--(c+1,c+1)--(c,c+1)--cycle,black); } for(int d=1; d<6; ++d) { draw((2d+1,1)--(2d+2,1)); } fill((6,4)--(7,4)--(7,5)--(6,5)--cycle,black); draw((5,4)--(6,4)); fill((7,5)--(8,5)--(8,6)--(7,6)--cycle,black); draw((7,4)--(8,4)); fill((8,4)--(9,4)--(9,5)--(8,5)--cycle,black); draw((9,4)--(10,4)); label("same",(6.3,2.45),N); label("pattern here",(7.5,1.4),N);[/asy]