MathDB
Modular Matrices

Source: 2018 VTRMC P2

January 8, 2023
VTRMCcollege contestsmatrixmodular arithmeticlinear algebra

Problem Statement

Let A,BM6(Z)A, B \in M_6 (\mathbb{Z} ) such that AIB mod 3A \equiv I \equiv B \text{ mod }3 and A3B3A3=B3A^3 B^3 A^3 = B^3. Prove that A=IA = I. Here M6(Z)M_6 (\mathbb{Z} ) indicates the 66 by 66 matrices with integer entries, II is the identity matrix, and XY mod 3X \equiv Y \text{ mod }3 means all entries of XYX-Y are divisible by 33.