MathDB
JBMO TST Moldova Problem 2

Source: JBMO TST Moldova Problem 2

October 13, 2020
algebraInequality3-variable inequalityMoldova

Problem Statement

The positive real numbers a,b,ca, b, c satisfy the equation a+b+c=1a+b+c=1. Prove the identity: (a+bc)(b+ca)c+ab+(b+ca)(c+ab)a+bc+(c+ab)(a+bc)b+ca=2\sqrt{\frac{(a+bc)(b+ca)}{c+ab}}+\sqrt{\frac{(b+ca)(c+ab)}{a+bc}}+\sqrt{\frac{(c+ab)(a+bc)}{b+ca}} = 2