MathDB
Inequality with reals at least one third

Source: Belarus TST 2024

July 17, 2024
Inequalityalgebrainequalities

Problem Statement

Prove that for any real numbers a,b,c,d13a,b,c,d \geq \frac{1}{3} the following inequality holds: a6b4+c3+b6c4+d3+c6d4+a3+d6a4+b3a+b+c+d4\sqrt{\frac{a^6}{b^4+c^3}+\frac{b^6}{c^4+d^3}+\frac{c^6}{d^4+a^3}+\frac{d^6}{a^4+b^3}}\geq \frac{a+b+c+d}{4} D. Zmiaikou