MathDB
Expectation of probability on simplex at least 1/(d+2)

Source: Miklós Schweitzer 2016, Problem 9

November 2, 2016
probability and statsprobability distributionprobabilitycollege contestsMiklos Schweitzer

Problem Statement

For p0,,pdRdp_0,\dots,p_d\in\mathbb{R}^d, let S(p0,,pd)={α0p0++αdpd:αi1,i=0dαi=1}. S(p_0,\dots,p_d)=\left\{ \alpha_0p_0+\dots+\alpha_dp_d : \alpha_i\le 1, \sum_{i=0}^d \alpha_i =1 \right\}. Let π\pi be an arbitrary probability distribution on Rd\mathbb{R}^d, and choose p0,,pdp_0,\dots,p_d independently with distribution π\pi. Prove that the expectation of π(S(p0,,pd))\pi(S(p_0,\dots,p_d)) is at least 1/(d+2)1/(d+2).