MathDB
A functional inequality

Source:

October 11, 2016
functional equationFunctional inequalityinequalities

Problem Statement

Let f:[0,1] R f : [0, 1] \to\ R be a function such that :- 1.)1.) f(x)0f(x) \ge 0 for all xx in [0,1][0,1] . 2.)2.) f(1)=1f(1) = 1 . 3.)3.) If x1,x2x_1 , x_2 are in [0,1][0,1] such that x1+x21x_1 + x_2 \le 1 , then f(x1)+f(x2)f(x1+x2)f(x_1) + f(x_2) \le f(x_1 + x_2) . Show that f(x)2xf(x) \le 2x for all xx in [0,1] [0,1] .