MathDB
Function problem

Source: 1998 HK

January 5, 2012
functionalgebra proposedalgebra

Problem Statement

Define a function ff on positive real numbers to satisfy f(1)=1,f(x+1)=xf(x) and f(x)=10g(x),f(1)=1 , f(x+1)=xf(x) \textrm{ and } f(x)=10^{g(x)}, where g(x)g(x) is a function defined on real numbers and for all real numbers y,zy,z and 0t10\leq t \leq 1, it satisfies g(ty+(1t)z)tg(y)+(1t)g(z).g(ty+(1-t)z) \leq tg(y)+(1-t)g(z). (1) Prove: for any integer nn and 0t10 \leq t \leq 1, we have t[g(n)g(n1)]g(n+t)g(n)t[g(n+1)g(n)].t[g(n)-g(n-1)] \leq g(n+t)-g(n) \leq t[g(n+1)-g(n)]. (2) Prove that 43f(12)432.\frac{4}{3} \leq f(\frac{1}{2}) \leq \frac{4}{3} \sqrt{2}.