MathDB
a_m = s a_{m-1} + b_m, Sum a^2_i <= 100/(1-s^2)

Source: Norwegian Mathematical Olympiad 2012 - Abel Competition p4b

September 4, 2019
algebrainequalities

Problem Statement

Positive numbers b1,b2,...,bnb_1, b_2,..., b_n are given so that b1+b2+...+bn10b_1 + b_2 + ...+ b_n \le 10. Further, a1=b1a_1 = b_1 and am=sam1+bma_m = sa_{m-1} + b_m for m>1m > 1, where 0s<10 \le s < 1. Show that a12+a22+...+an21001s2a^2_1 + a^2_2 + ... + a^2_n \le \frac{100}{1 - s^2}