MathDB
Number theory functional equation

Source: 2020 Serbian MO, Problem 5

September 26, 2020
number theoryfunctional equationfunctionalgebra

Problem Statement

For a natural number nn, with v2(n)v_2(n) we denote the largest integer k0k\geq0 such that 2kn2^k|n. Let us assume that the function f ⁣:NNf\colon\mathbb{N}\to\mathbb{N} meets the conditions:
(i)(i) f(x)3xf(x)\leq3x for all natural numbers xNx\in\mathbb{N}. (ii)(ii) v2(f(x)+f(y))=v2(x+y)v_2(f(x)+f(y))=v_2(x+y) for all natural numbers x,yNx,y\in\mathbb{N}.
Prove that for every natural number aa there exists exactly one natural number xx such that f(x)=3af(x)=3a.