MathDB
Problems
Contests
National and Regional Contests
Singapore Contests
Singapore MO Open
2015 Singapore MO Open
4
SMO 2015 open q4
SMO 2015 open q4
Source: SMO 2015 open
March 31, 2018
number theory
Fibonacci sequence
Problem Statement
Let
f
0
,
f
1
,
.
.
.
f_0, f_1,...
f
0
,
f
1
,
...
be the Fibonacci sequence:
f
0
=
f
1
=
1
,
f
n
=
f
n
−
1
+
f
n
−
2
f_0 = f_1 = 1, f_n = f_{n-1} + f_{n-2}
f
0
=
f
1
=
1
,
f
n
=
f
n
−
1
+
f
n
−
2
if
n
≥
2
n \geq 2
n
≥
2
. Determine all possible positive integers
n
n
n
so that there is a positive integer
a
a
a
such that
f
n
≤
a
≤
f
n
+
1
f_n \leq a \leq f_{n+1}
f
n
≤
a
≤
f
n
+
1
and that
a
(
1
f
1
+
1
f
1
f
2
+
⋯
+
1
f
1
f
2
.
.
.
f
n
)
a( \frac{1}{f_1}+\frac{1}{f_1f_2}+\cdots+\frac{1}{f_1f_2...f_n} )
a
(
f
1
1
+
f
1
f
2
1
+
⋯
+
f
1
f
2
...
f
n
1
)
is an integer.
Back to Problems
View on AoPS