MathDB
P18 [Combinatorics] - Turkish NMO 1st Round - 2001

Source:

April 20, 2014
inequalitiestriangle inequalitygeometryperpendicular bisector

Problem Statement

A convex polygon has at least one side with length 11. If all diagonals of the polygon have integer lengths, at most how many sides does the polygon have?
<spanclass=latexbold>(A)</span> 3<spanclass=latexbold>(B)</span> 5<spanclass=latexbold>(C)</span> 7<spanclass=latexbold>(D)</span> 10<spanclass=latexbold>(E)</span> None of the preceding <span class='latex-bold'>(A)</span>\ 3 \qquad<span class='latex-bold'>(B)</span>\ 5 \qquad<span class='latex-bold'>(C)</span>\ 7 \qquad<span class='latex-bold'>(D)</span>\ 10 \qquad<span class='latex-bold'>(E)</span>\ \text{None of the preceding}