MathDB
Equality algebra

Source: pOMA 2023/4

November 21, 2023
algebra

Problem Statement

Let x1,x2,,xnx_1,x_2,\ldots,x_n be positive real numbers such that x1+1x2=x2+1x3=x3+1x4==xn1+1xn=xn+1x1. x_1+\frac{1}{x_2} = x_2+\frac{1}{x_3} = x_3+\frac{1}{x_4} = \dots = x_{n-1}+\frac{1}{x_n} = x_n+\frac{1}{x_1}. Prove that x1=x2=x3==xnx_1=x_2=x_3=\dots=x_n.