MathDB
Inequality (Turkey EGMO TST 2014)

Source: (Turkey EGMO TST 2014)

July 28, 2016
inequalities

Problem Statement

Let x,y,zx,y,z be positive real numbers such that x+y+zx2+y2+z2x+y+z \ge x^2+y^2+z^2. Show that; x2+3x3+1+y2+3y3+1+z2+3z3+16\dfrac{x^2+3}{x^3+1}+\dfrac{y^2+3}{y^3+1}+\dfrac{z^2+3}{z^3+1}\ge6