MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2010 Harvard-MIT Mathematics Tournament
3
2010 Algebra #3: Recursive Sequence
2010 Algebra #3: Recursive Sequence
Source:
July 15, 2012
Problem Statement
Let
S
0
=
0
S_0=0
S
0
=
0
and let
S
k
S_k
S
k
equal
a
1
+
2
a
2
+
…
+
k
a
k
a_1+2a_2+\ldots+ka_k
a
1
+
2
a
2
+
…
+
k
a
k
for
k
≥
1
k\geq 1
k
≥
1
. Define
a
i
a_i
a
i
to be
1
1
1
if
S
i
−
1
<
i
S_{i-1}<i
S
i
−
1
<
i
and
−
1
-1
−
1
if
S
i
−
1
≥
i
S_{i-1}\geq i
S
i
−
1
≥
i
. What is the largest
k
≤
2010
k\leq 2010
k
≤
2010
such that
S
k
=
0
S_k=0
S
k
=
0
?
Back to Problems
View on AoPS