MathDB
(abab) + (cdcd) is a perfect square

Source: 0

April 23, 2009

Problem Statement

Let m\equal{}\left(abab\right) and n\equal{}\left(cdcd\right) be four-digit numbers in decimal system. If m\plus{}n is a perfect square, what is the largest value of abcd a\cdot b\cdot c\cdot d?
<spanclass=latexbold>(A)</span> 392<spanclass=latexbold>(B)</span> 420<spanclass=latexbold>(C)</span> 588<spanclass=latexbold>(D)</span> 600<spanclass=latexbold>(E)</span> 750<span class='latex-bold'>(A)</span>\ 392 \qquad<span class='latex-bold'>(B)</span>\ 420 \qquad<span class='latex-bold'>(C)</span>\ 588 \qquad<span class='latex-bold'>(D)</span>\ 600 \qquad<span class='latex-bold'>(E)</span>\ 750