MathDB
Inradius of triangles formed by diagonals

Source: 0

April 28, 2009
geometryinradiusperimeter

Problem Statement

Let E E be the intersection of the diagonals of the convex quadrilateral ABCD ABCD. The perimeters of AEB \triangle AEB, BEC \triangle BEC, CED \triangle CED, and DEA \triangle DEA are all same. If inradii of AEB \triangle AEB, BEC \triangle BEC, CED \triangle CED are 3,4,6 3,4,6, respectively, then inradius of DEA \triangle DEA will be ?
<spanclass=latexbold>(A)</span> 92<spanclass=latexbold>(B)</span> 72<spanclass=latexbold>(C)</span> 133<spanclass=latexbold>(D)</span> 5<spanclass=latexbold>(E)</span> None<span class='latex-bold'>(A)</span>\ \frac {9}{2} \qquad<span class='latex-bold'>(B)</span>\ \frac {7}{2} \qquad<span class='latex-bold'>(C)</span>\ \frac {13}{3} \qquad<span class='latex-bold'>(D)</span>\ 5 \qquad<span class='latex-bold'>(E)</span>\ \text{None}