MathDB
Possible Values of Powers of i

Source:

June 8, 2009

Problem Statement

If S \equal{} i^n \plus{} i^{\minus{}n}, where i \equal{} \sqrt{\minus{}1} and n n is an integer, then the total number of possible distinct values for S S is: <spanclass=latexbold>(A)</span> 1<spanclass=latexbold>(B)</span> 2<spanclass=latexbold>(C)</span> 3<spanclass=latexbold>(D)</span> 4<spanclass=latexbold>(E)</span> more than 4 <span class='latex-bold'>(A)</span>\ 1\qquad <span class='latex-bold'>(B)</span>\ 2\qquad <span class='latex-bold'>(C)</span>\ 3\qquad <span class='latex-bold'>(D)</span>\ 4\qquad <span class='latex-bold'>(E)</span>\ \text{more than 4}