MathDB
Circle and symmetry

Source: 0

April 23, 2009
symmetrygeometry

Problem Statement

Chord [AD] \left[AD\right] is perpendicular to the diameter [BC] \left[BC\right] of a circle. Let E E and F F be the midpoints of the arcs AC AC and CD CD, respectively. If AD\bigcap BE\equal{}\left\{G\right\}, AF\bigcap BC\equal{}\left\{H\right\} and m(AC)\equal{}\alpha, find the measure of angle BHC BHC in terms of α \alpha.
(A)\ 90{}^\circ \minus{}\frac{\alpha }{2} \qquad(B)\ 60{}^\circ \minus{}\frac{\alpha }{3} \qquad(C)\ \alpha \minus{}30{}^\circ \\ \qquad(D)\ 15{}^\circ \plus{}\frac{\alpha }{2} \qquad(E)\ \frac{180{}^\circ \minus{}2\alpha }{3}