MathDB
2020 BMT Team 24

Source:

January 9, 2022
algebracombinatorics

Problem Statement

For positive integers NN and mm, where mNm \le N, define am,N=1(N+1m)i=m1N1(im1)Nia_{m,N} =\frac{1}{{N+1 \choose m}} \sum_{i=m-1}^{N-1} \frac{ {i \choose m-1}}{N - i} Compute the smallest positive integer NN such that m=1Nam,N>2020NN+1\sum^N_{m=1}a_{m,N} >\frac{2020N}{N +1}