MathDB
Prove that B cannot be obtain ed from A with some operations

Source:

September 22, 2010
linear algebramatrixIMO Shortlist

Problem Statement

Consider the two square matrices A=\begin{bmatrix} +1 & +1 &+1& +1 &+1 \\+1 &+1 &+1&-1 &-1 \\ +1 &-1&-1 &+1& +1 \\ +1 & -1 & -1 & -1 & +1 \\ +1 &+1&-1 &+1&-1 \end{bmatrix}   \text{ and }   B=\begin{bmatrix} +1 & +1 &+1& +1 &+1 \\+1 &+1 &+1&-1 &-1 \\ +1 &+1&-1& +1&-1 \\ +1 &-1& -1& +1& +1 \\ +1 & -1& +1&-1 &+1 \end{bmatrix}
with entries +1+1 and āˆ’1-1. The following operations will be called elementary:
(1) Changing signs of all numbers in one row;
(2) Changing signs of all numbers in one column;
(3) Interchanging two rows (two rows exchange their positions);
(4) Interchanging two columns.
Prove that the matrix BB cannot be obtained from the matrix AA using these operations.