MathDB
Probability of Greater Area

Source:

February 19, 2008
probabilitygeometrysymmetryanalytic geometry

Problem Statement

A point P P is chosen at random in the interior of equilateral triangle ABC ABC. What is the probability that ABP \triangle ABP has a greater area than each of ACP \triangle ACP and BCP \triangle BCP? <spanclass=latexbold>(A)</span> 16<spanclass=latexbold>(B)</span> 14<spanclass=latexbold>(C)</span> 13<spanclass=latexbold>(D)</span> 12<spanclass=latexbold>(E)</span> 23 <span class='latex-bold'>(A)</span>\ \frac{1}{6} \qquad <span class='latex-bold'>(B)</span>\ \frac{1}{4} \qquad <span class='latex-bold'>(C)</span>\ \frac{1}{3} \qquad <span class='latex-bold'>(D)</span>\ \frac{1}{2} \qquad <span class='latex-bold'>(E)</span>\ \frac{2}{3}