MathDB
2020 PUMaC Team 15

Source:

January 1, 2022
floor functionalgebra

Problem Statement

Suppose that f is a function f:R0Rf : R_{\ge 0} \to R so that for all x,yR0x, y \in R_{\ge 0} (nonnegative reals) we have that f(x)+f(y)=f(x+y+xy)+f(x)f(y).f(x)+f(y) = f(x+y+xy)+f(x)f(y). Given that f(35)=12f\left(\frac{3}{5} \right) = \frac12 andf(1)=3 f(1) = 3, determine log2(f(1020211)).\lfloor \log_2 (-f(10^{2021} - 1)) \rfloor.