MathDB
Binary Operations

Source: 1970 AHSME Problem 13

March 24, 2014
AMC

Problem Statement

Given the binary operation \ast defined by ab=aba\ast b=a^b for all positive numbers aa and bb. The for all positive a,b,c,n,a,b,c,n, we have
<spanclass=latexbold>(A)</span>ab=ba<spanclass=latexbold>(B)</span>a(bc)=(ab)c<span class='latex-bold'>(A) </span>a\ast b=b\ast a\qquad<span class='latex-bold'>(B) </span>a\ast (b\ast c)=(a\ast b)\ast c\qquad
<spanclass=latexbold>(C)</span>(abn)=(an)b<spanclass=latexbold>(D)</span>(ab)n=a(bn)<spanclass=latexbold>(E)</span>None of these<span class='latex-bold'>(C) </span>(a\ast b^n)=(a\ast n)\ast b\qquad<span class='latex-bold'>(D) </span>(a\ast b)^n=a\ast (bn)\qquad <span class='latex-bold'>(E) </span>\text{None of these}