MathDB
SMT 2023 Discrete #6

Source:

May 3, 2023

Problem Statement

We say that an integer x{1,,102}x\in\{1,\dots,102\} is <spanclass=latexitalic>squareish</span><span class='latex-italic'>square-ish</span> if there exists some integer nn such that xn2+n(mod103)x\equiv n^2+n\pmod{103}. Compute the product of all <spanclass=latexitalic>squareish</span><span class='latex-italic'>square-ish</span> integers modulo 103103.