MathDB
Problems
Contests
National and Regional Contests
Bulgaria Contests
Bulgaria National Olympiad
1996 Bulgaria National Olympiad
1
Sequence $\{a_n\}$
Sequence $\{a_n\}$
Source: Bulgaria 1996
July 28, 2020
number theory
Problem Statement
Sequence
{
a
n
}
\{a_n\}
{
a
n
}
it define
a
1
=
1
a_1=1
a
1
=
1
and
a
n
+
1
=
a
n
n
+
n
a
n
a_{n+1}=\frac{a_n}{n}+\frac{n}{a_n}
a
n
+
1
=
n
a
n
+
a
n
n
for all
n
≥
1
n\ge 1
n
≥
1
\\ Prove that
⌊
a
n
2
⌋
=
n
\lfloor a_n^2\rfloor=n
⌊
a
n
2
⌋
=
n
for all
n
≥
4.
n\ge 4.
n
≥
4.
Back to Problems
View on AoPS