MathDB
equal products of real numbers

Source: Nordic Mathematical Contest 2002 #3

September 24, 2017
Productcombinatorics

Problem Statement

Let a1,a2,...,an,{a_1, a_2, . . . , a_n,} and b1,b2,...,bn{b_1, b_2, . . . , b_n} be real numbers with a1,a2,...,an{a_1, a_2, . . . , a_n} distinct. Show that if the product (ai+b1)(ai+b2)(ai+bn){(a_i + b_1)(a_i + b_2) \cdot \cdot \cdot (a_i + b_n)} takes the same value for every i=1,2,...,n,{ i = 1, 2, . . . , n, } , then the product (a1+bj)(a2+bj)(an+bj){(a_1 + b_j)(a_2 + b_j) \cdot \cdot \cdot (a_n + b_j)} also takes the same value for every j=1,2,...,n,{j = 1, 2, . . . , n, } .