MathDB
Today's calculation of Integral 176

Source: Gunma University entrance exam 1969

February 4, 2007
calculusintegrationtrigonometrylimitinductionsymmetrycalculus computations

Problem Statement

Let fn(x)=k=1nsinkxk(k+1).f_{n}(x)=\sum_{k=1}^{n}\frac{\sin kx}{\sqrt{k(k+1)}}. Find limn02π{fn(x)}2dx.\lim_{n\to\infty}\int_{0}^{2\pi}\{f_{n}(x)\}^{2}dx.