MathDB
A sufficient condition for a function to be of class C^infinity

Source:

October 28, 2019
functionreal analysiscalculusderivativeSupportmonotony

Problem Statement

Let be a twice-differentiable function f:RR f:\mathbb{R}\longrightarrow\mathbb{R} that has the properties that: (i) suppf=f(R) \text{(i) supp} f''=f\left(\mathbb{R}\right) \text{(ii)}\exists g:\mathbb{R}\longrightarrow\mathbb{R} \forall x\in\mathbb{R}  f(x+1)=f(x)+f'\left( g(x)\right)\text{ and } f'(x+1)=f'(x)+f''\left( g(x)\right)
Prove that: a) any such g g is injective. b) f f is of class C, C^{\infty } , and for any natural number n, n, any real number x x and any such g, g, f(n)(x+1)=f(n)(x)+f(n+1)(g(x)).f^{(n)}(x+1)=f^{(n)}(x)+f^{(n+1)}\left( g(x)\right) .
Laurențiu Panaitopol