MathDB
Inequality strikes again.

Source: Tuymaada 2020 Senior, Problem 2

October 6, 2020
Inequalityinequalitiesn-variable inequality

Problem Statement

Given positive real numbers a1,a2,,ana_1, a_2, \dots, a_n. Let m=min(a1+1a2,a2+1a3,,an1+1an,an+1a1). m = \min \left( a_1 + \frac{1}{a_2}, a_2 + \frac{1}{a_3}, \dots, a_{n - 1} + \frac{1}{a_n} , a_n + \frac{1}{a_1} \right). Prove the inequality a1a2ann+1a1a2annm. \sqrt[n]{a_1 a_2 \dots a_n} + \frac{1}{\sqrt[n]{a_1 a_2 \dots a_n}} \ge m.