Let f(x) be a real-valued function satisfying af(x)+bf(−x)=px2+qx+r. a and b are distinct real numbers and p,q,r are non-zero real numbers. Then f(x)=0 will have real solutions when (A)(a−ba+b)≤4prq2
(B)(a−ba+b)≤q24pr
(C)(a−ba+b)≥4prq2
(D)(a−ba+b)≥q24pr