MathDB
Find the remainder of division of $(m+3)^{1444}$ to $n$

Source: Albania JTST 2015

October 4, 2023

Problem Statement

112+123+134++120142015=mn,\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\dots+\frac{1}{2014\cdot2015}=\frac{m}{n}, where mn\frac{m}{n} is irreducible. a) Find m+n.m+n. b) Find the remainder of division of (m+3)1444(m+3)^{1444} to nn{}.