MathDB
Romania District Olympiad 2002 - Grade XI

Source:

March 18, 2011
trigonometrygeometry proposedgeometry

Problem Statement

In the xOyxOy system, consider the points An(n,n3)A_n(n,n^3) with nNn\in \mathbb{N}^* and the point B(0,1)B(0,1). Prove that
a) for any positive integers k>j>i1k>j>i\ge 1, the points Ai,Aj,AkA_i,A_j,A_k cannot be collinear. b) for any positive integers ik>ik1>>i11i_k>i_{k-1}>\ldots>i_1\ge 1, we have μ(Ai1OB^)+μ(Ai2OB^)++μ(AikOB^)<π2\mu(\widehat{A_{i_1}OB})+\mu(\widehat{A_{i_2}OB})+\cdots+\mu(\widehat{A_{i_k}OB})<\frac{\pi}{2} ***