MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania Team Selection Test
2015 Romania Team Selection Tests
4
Floor function and density !
Floor function and density !
Source: Romania TST 2015 Day 1 Problem 4
April 9, 2015
floor function
Density
Kronecker
algebra
number theory
Problem Statement
Let
k
k
k
be a positive integer congruent to
1
1
1
modulo
4
4
4
which is not a perfect square and let
a
=
1
+
k
2
a=\frac{1+\sqrt{k}}{2}
a
=
2
1
+
k
. Show that
{
⌊
a
2
n
⌋
−
⌊
a
⌊
a
n
⌋
⌋
:
n
∈
N
>
0
}
=
{
1
,
2
,
…
,
⌊
a
⌋
}
\{\left \lfloor{a^2n}\right \rfloor-\left \lfloor{a\left \lfloor{an}\right \rfloor}\right \rfloor : n \in \mathbb{N}_{>0}\}=\{1 , 2 , \ldots ,\left \lfloor{a}\right \rfloor\}
{
⌊
a
2
n
⌋
−
⌊
a
⌊
an
⌋
⌋
:
n
∈
N
>
0
}
=
{
1
,
2
,
…
,
⌊
a
⌋
}
.
Back to Problems
View on AoPS