MathDB
Floor function and density !

Source: Romania TST 2015 Day 1 Problem 4

April 9, 2015
floor functionDensityKroneckeralgebranumber theory

Problem Statement

Let kk be a positive integer congruent to 11 modulo 44 which is not a perfect square and let a=1+k2a=\frac{1+\sqrt{k}}{2}. Show that {a2naan:nN>0}={1,2,,a}\{\left \lfloor{a^2n}\right \rfloor-\left \lfloor{a\left \lfloor{an}\right \rfloor}\right \rfloor : n \in \mathbb{N}_{>0}\}=\{1 , 2 , \ldots ,\left \lfloor{a}\right \rfloor\}.