MathDB
a^3 + b^3 + c^3 + 3abc \geq a^2(b + c) + b^2(a + c) + c^2(a + b)

Source: Polish MO Recond Round 1979 p2

September 9, 2024
algebrainequalities

Problem Statement

Prove that if a,b,c a, b, c are non-negative numbers, then a3+b3+c3+3abca2(b+c)+b2(a+c)+c2(a+b). a^3 + b^3 + c^3 + 3abc \geq a^2(b + c) + b^2(a + c) + c^2(a + b).