MathDB
Prove that f(n+f(n))=n for each n - [Bulgaria NMO 2010]

Source:

December 28, 2010
functionfloor functioninductionalgebra proposedalgebra

Problem Statement

Let f:N→Nf: \mathbb N \to \mathbb N be a function such that f(1)=1f(1)=1 and f(n)=n - f(f(n-1)),   \forall n \geq 2. Prove that f(n+f(n))=nf(n+f(n))=n for each positive integer n.n.