MathDB
Infinite digit number having every n digit number

Source: Bulgaria National Olympiad 2020

July 3, 2020
algebrainteger part of polynomials

Problem Statement

Let f(x)f(x) be a nonconstant real polynomial. The sequence {ai}i=1\{a_i\}_{i=1}^{\infty} of real numbers is strictly increasing and unbounded, as ai+1<ai+2020.a_{i+1}<a_i+2020. The integers f(a1)\lfloor{|f(a_1)|}\rfloor , f(a2)\lfloor{|f(a_2)|}\rfloor , f(a3)\lfloor{|f(a_3)|}\rfloor , \dots are written consecutively in such a way that their digits form an infinite sequence of digits {sk}k=1\{s_k\}_{k=1}^{\infty} (here sk{0,1,,9}s_k\in\{0, 1, \dots, 9\}).  If nNn\in\mathbb{N} , prove that among the numbers sn(k1)+1sn(k1)+2snk\overline{s_{n(k-1)+1}s_{n(k-1)+2}\cdots s_{nk}} , where kNk\in\mathbb{N} , all nn-digit numbers appear.