MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania - Local Contests
Grigore Moisil Intercounty
2005 Grigore Moisil Urziceni
2
Three nice limits
Three nice limits
Source:
November 28, 2019
limits
real analysis
Problem Statement
a) Prove that
lim
x
→
∞
x
⋅
∑
k
=
1
⌊
x
⌋
1
k
+
x
=
1.
\lim_{x\to\infty } \sqrt{x}\cdot\sum_{k=1}^{\lfloor \sqrt{x} \rfloor} \frac{1}{k+x}=1.
lim
x
→
∞
x
⋅
∑
k
=
1
⌊
x
⌋
k
+
x
1
=
1.
b) Show that
lim
x
→
∞
(
−
⌊
x
⌋
+
x
⋅
∑
k
=
1
⌊
x
⌋
1
k
+
x
)
=
−
1
2
\lim_{x\to\infty } \left( -\left\lfloor\sqrt{x}\right\rfloor +x\cdot\sum_{k=1}^{\lfloor \sqrt{x} \rfloor} \frac{1}{k+x} \right) =\frac{-1}{2}
lim
x
→
∞
(
−
⌊
x
⌋
+
x
⋅
∑
k
=
1
⌊
x
⌋
k
+
x
1
)
=
2
−
1
c) What about
lim
x
→
∞
(
−
x
+
x
⋅
∑
k
=
1
⌊
x
⌋
1
k
+
x
)
?
\lim_{x\to\infty } \left( -\sqrt{x} +x\cdot\sum_{k=1}^{\lfloor \sqrt{x} \rfloor} \frac{1}{k+x} \right) ?
lim
x
→
∞
(
−
x
+
x
⋅
∑
k
=
1
⌊
x
⌋
k
+
x
1
)
?
Back to Problems
View on AoPS