MathDB
Chained sequences

Source: KMO 2022 P1

October 29, 2022
algebra

Problem Statement

Three sequences an,bn,cn{a_n},{b_n},{c_n} satisfy the following conditions.
[*]a1=2,b1=4,c1=5a_1=2,\,b_1=4,\,c_1=5 [*]n,  an+1=bn+1cn,bn+1=cn+1an,cn+1=an+1bn\forall n,\; a_{n+1}=b_n+\frac{1}{c_n}, \, b_{n+1}=c_n+\frac{1}{a_n}, \, c_{n+1}=a_n+\frac{1}{b_n}
Prove that for all positive integers nn, max(an,bn,cn)>2n+13max(a_n,b_n,c_n)>\sqrt{2n+13}.