MathDB
Today's calculation of Integral 607

Source:

May 16, 2010
calculusintegrationanalytic geometrylogarithmsgeometryfunctionparameterization

Problem Statement

On the coordinate plane, Let CC be the graph of y=(lnx)2 (x>0)y=(\ln x)^2\ (x>0) and for α>0\alpha >0, denote L(α)L(\alpha) be the tangent line of CC at the point (α, (lnα)2).(\alpha ,\ (\ln \alpha)^2).
(1) Draw the graph.
(2) Let n(α)n(\alpha) be the number of the intersection points of CC and L(α)L(\alpha). Find n(α)n(\alpha).
(3) For 0<α<10<\alpha <1, let S(α)S(\alpha) be the area of the region bounded by C, L(α)C,\ L(\alpha) and the xx-axis. Find S(α)S(\alpha).
2010 Tokyo Institute of Technology entrance exam, Second Exam.