MathDB
(m+n)a_{m+n }<= a_m +a_n , prove 1 / a_{200} > 4 x 10^7

Source: Norwegian Mathematical Olympiad 2011 - Abel Competition p3a

September 4, 2019
inequalitiesalgebraSequence

Problem Statement

The positive numbers a1,a2,...a_1, a_2,... satisfy a1=1a_1 = 1 and (m+n)am+nam+an(m+n)a_{m+n }\le a_m +a_n for all positive integers mm and nn. Show that 1a200>4107\frac{1}{a_{200}} > 4 \cdot 10^7 . .