MathDB
2024 COMC B1

Source:

November 4, 2024
Comc

Problem Statement

For any positive integer number kk, the factorial k!k! is defined as a product of all integers between 11 and kk inclusive: k!=k×(k1)××1k!=k\times{(k-1)}\times\dots\times{1}. Let s(n)s(n) denote the sum of the first nn factorials, i.e. s(n)=n×(n1)××1n!+(n1)×(n2)××1(n1)!++2×12!+11!s(n)=\underbrace{n\times{(n-1)}\times\dots\times{1}}_{n!}+\underbrace{(n-1)\times{(n-2)}\times\dots\times{1}}_{(n-1)!}+\cdots +\underbrace{2\times{1}}_{2!}+\underbrace{1}_{1!} Find the remainder when s(2024)s(2024) is divided by 88