MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN O Problems
19
O 19
O 19
Source:
May 25, 2007
modular arithmetic
Problem Statement
Let
m
,
n
≥
2
m, n \ge 2
m
,
n
≥
2
be positive integers, and let
a
1
,
a
2
,
⋯
,
a
n
a_{1}, a_{2}, \cdots,a_{n}
a
1
,
a
2
,
⋯
,
a
n
be integers, none of which is a multiple of
m
n
−
1
m^{n-1}
m
n
−
1
. Show that there exist integers
e
1
,
e
2
,
⋯
,
e
n
e_{1}, e_{2}, \cdots, e_{n}
e
1
,
e
2
,
⋯
,
e
n
, not all zero, with
∣
e
i
∣
<
m
\vert e_i \vert<m
∣
e
i
∣
<
m
for all
i
i
i
, such that
e
1
a
1
+
e
2
a
2
+
⋯
+
e
n
a
n
e_{1}a_{1}+e_{2}a_{2}+ \cdots +e_{n}a_{n}
e
1
a
1
+
e
2
a
2
+
⋯
+
e
n
a
n
is a multiple of
m
n
m^n
m
n
.
Back to Problems
View on AoPS