MathDB
gcd(a_1^n + a-1a_2 ...a_n, a_2^n +a_1a_2 ...a_n, ... , a_n^n +a_1a_2 ...a_n)

Source: 2018 Saudi Arabia GMO TST II p1

July 31, 2020
number theorygreatest common divisorGCD

Problem Statement

Let nn be an odd positive integer with n>1n > 1 and let a1,a2,...,ana_1, a_2,... , a_n be positive integers such that gcd (a1,a2,...,an)=1(a_1, a_2,... , a_n) = 1. Let dd = gcd (a1n+a1a2an,a2n+a1a2an,...,ann+a1a2an)(a_1^n + a_1\cdot a_2 \cdot \cdot \cdot a_n, a_2^n + a_1\cdot a_2 \cdot \cdot \cdot a_n, ... , a_n^n + a_1\cdot a_2 \cdot \cdot \cdot a_n). Show that the possible values of dd are d=1,d=2d = 1, d = 2