MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
2006 Moldova Team Selection Test
1
Divisors and finding n
Divisors and finding n
Source: Moldavian TST_1, Problem 1
March 6, 2006
number theory proposed
number theory
Problem Statement
Determine all even numbers
n
n
n
,
n
∈
N
n \in \mathbb N
n
∈
N
such that
1
d
1
+
1
d
2
+
⋯
+
1
d
k
=
1620
1003
,
{ \frac{1}{d_{1}}+\frac{1}{d_{2}}+ \cdots +\frac{1}{d_{k}}=\frac{1620}{1003}},
d
1
1
+
d
2
1
+
⋯
+
d
k
1
=
1003
1620
,
where
d
1
,
d
2
,
…
,
d
k
d_1, d_2, \ldots, d_k
d
1
,
d
2
,
…
,
d
k
are all different divisors of
n
n
n
.
Back to Problems
View on AoPS