MathDB
For which h, a_n=1

Source: ItaMO 2005, P5

March 9, 2012
modular arithmeticEulerfunctionnumber theorytotient functionalgebra proposedalgebra

Problem Statement

Let hh be a positive integer. The sequence ana_n is defined by a0=1a_0 = 1 and
an+1={an2 if an is even an+h otherwise .a_{n+1} = \{\begin{array}{c} \frac{a_n}{2} \text{ if } a_n \text{ is even }\\\\a_n+h \text{ otherwise }.\end{array}
For example, h=27h = 27 yields a1=28,a2=14,a3=7,a4=34a_1=28, a_2 = 14, a_3 = 7, a_4 = 34 etc. For which hh is there an n>0n > 0 with an=1a_n = 1?